Metropolis Criterion Based Fuzzy Q-Learning Energy Management for Smart Grids
نویسندگان
چکیده
For the energy management problems for demand response in electricity grid, a Metropolis Criterion based fuzzy Q-learning consumer energy management controller (CEMC) is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for the consumer behavior in electricity grid. In this case, the Q-learning, which is independent of mathematic model, and prior-knowledge, has good performance. The fuzzy inference and Metropolis Criterion are introduced in order to facilitate generalization in large state space and balance exploration and exploitation in action selection in Q-learning individually. Simulation results show that the proposed controller can learn to take the best action to regulate consumer behavior with the features of low average end-user financial costs and high consumer satisfaction.
منابع مشابه
Designing Decision Maker in a Smart Home for Energy Consumption Optimization Using Fuzzy Modeling
existed electricity grids deliver produced power to the consumer passing through transmission and distribution grids. According to high losses of these grids in transmission level and inexistence of bilateral interaction for simultaneous information exchange, a concept of smart grids were made by capabilities such as consciously participation of consumers in the smart electricity grids, an amou...
متن کاملA Fuzzy Multi-Objective Optimization Model for Production and Consumption Management in Energy Micro Smart Grids
Electricity is one of the most important carriers of energy used in buildings. By introducing energy smart grids (SG) and energy micro smart grids (MSGs) alongside smart buildings, a good platform has been provided for optimal planning of electricity production and consumption. In this paper, an MSG consists of renewable resources, diesel generators and cell batteries in bidirectional connectio...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملMetropolis Criterion Based Q-Learning Flow Control for High-Speed Networks
For the congestion problems in high-speed networks, a Metropolis criterion based Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks. The Q-learning algorithm, which is independent of mathematic model, shows the particular superiority in high-speed networks. It obtains ...
متن کاملBatch Reinforcement Learning for Smart Home Energy Management
Smart grids enhance power grids by integrating electronic equipment, communication systems and computational tools. In a smart grid, consumers can insert energy into the power grid. We propose a new energy management system (called RLbEMS) that autonomously defines a policy for selling or storing energy surplus in smart homes. This policy is achieved through Batch Reinforcement Learning with hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013